Keap1/Cullin3 Modulates p62/SQSTM1 Activity via UBA Domain Ubiquitination.

نویسندگان

  • YouJin Lee
  • Tsui-Fen Chou
  • Sara K Pittman
  • Amy L Keith
  • Babak Razani
  • Conrad C Weihl
چکیده

p62/SQSTM1 (p62) is a scaffolding protein that facilitates the formation and degradation of ubiquitinated aggregates via its self-interaction and ubiquitin binding domains. The regulation of this process is unclear but may relate to the post-translational modification of p62. In the present study, we find that Keap1/Cullin3 ubiquitinates p62 at lysine 420 within its UBA domain. Substitution of lysine 420 with an arginine diminishes p62 sequestration and degradation activity similar what is seen when the UBA domain is deleted. Overexpression of Keap1/Cullin3 in p62-WT-expressing cells increases ubiquitinated inclusion formation and p62's association with LC3 and rescues proteotoxicity. This effect is not seen in cells expressing a mutant p62 that fails to interact with Keap1. Interestingly, p62 disease mutants have diminished or absent UBA domain ubiquitination. These data suggest that the ubiquitination of p62's UBA domain at lysine 420 may regulate p62's function and be disrupted in p62-associated disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone.

The p62 protein (also known as SQSTM1) mediates diverse cellular functions including control of NFkappaB signaling and transcriptional activation. p62 binds non-covalently to ubiquitin and co-localizes with ubiquitylated inclusions in a number of human protein aggregation diseases. Mutations in the gene encoding p62 cause Paget's disease of bone (PDB), a common disorder of the elderly character...

متن کامل

Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget's disease of bone.

Mutations affecting the UBA (ubiquitin-associated) domain of SQSTM1 (Sequestosome 1) (p62) are a common cause of Paget's disease of bone. The missense mutations resolve into those which retain [P392L (Pro(392)-->Leu), G411S] or abolish (M404V, G425R) the ability of the isolated UBA domain to bind Lys-48-linked polyubiquitin. These effects can be rationalized with reference to the solution struc...

متن کامل

The higher-order molecular organization of p62/SQSTM1

The multifunctional signaling adaptor and selective autophagy receptor p62/SQSTM1 is commonly found in dense light-microscopic loci of eukaryotic cells. Recently, Ciuffa et al. demonstrated that p62 is able to form organized polymers of helical symmetry once purified and reconstituted in the test tube [1]. In selective autophagy, p62 acts both as a substrate and as a receptor to bridge LC3 atta...

متن کامل

ALS-FTLD associated mutations of SQSTM1 impact on Keap1-Nrf2 signalling

The transcription factor Nrf2 and its repressor protein Keap1 play key roles in the regulation of antioxidant stress responses and both Keap1-Nrf2 signalling and oxidative stress have been implicated in the pathogenesis of the ALS-FTLD spectrum of neurodegenerative disorders. The Keap1-binding partner and autophagy receptor SQSTM1/p62 has also recently been linked genetically to ALS-FTLD, with ...

متن کامل

Disruption of ubiquitin-mediated processes in diseases of the brain and bone.

A role for ubiquitin in the pathogenesis of human diseases was first suggested some two decades ago, from studies that localized the protein to intracellular protein aggregates, which are a feature of the major human neurodegenerative disorders. Although several different mechanisms have been proposed to connect impairment of the UPS (ubiquitin-proteasome system) to the presence of these 'ubiqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2017